

User Manual

Release 1.2 | 20 January 2019

Copyright: Corey J. Baker; Eric F. May Fluid Science & Resources Division The University of Western Australia 35 Stirling Hwy, Crawley, WA, 6009 Website: <u>http://fsr.ecm.uwa.edu.au/</u> Email: <u>Eric.May@uwa.edu.au</u>

Citation: BAKER, C.J.; HUGHES, T.J.; ROWLAND, D.; AMAN, Z.; MAY, E.F. (2019): ThermoFAST 1.2. Thermodynamic Calculator for Natural Gas Properties. Fluid Science and Resources, The University of Western Australia.

Table of Contents

1	Int	Introduction1			
2	Developers1				
3	Ac	Acknowledgements1			
4	Ins	tallat	tion Folders	2	
5	5 Menu Items			2	
	5.1	File	>	2	
	5.2	Uni	its	4	
	5.3	Mo	dels	3	
	5.4	Hel	p	4	
6	Use	er Int	terface	4	
	6.1	FLU	UID	4	
	6.2	CO	MPOSITION	5	
	6.3	FLA	ASH	7	
	6.4	SO	LIDS	8	
	6.4	.1	SEARCH	8	
	6.4	.2	GRAPH	9	
	6.4	.3	TYPES OF TRANSITION POINTS	10	
	6.5	TU	NE	13	

1 Introduction

ThermoFAST is a thermodynamic property calculator for LNG and natural gas with the ability to perform vapour-liquid-solid equilibrium calculations, predict conditions at which solid formation can occur in complex, multi-component systems and generate full phase envelopes.

If more information regarding the thermodynamic models or algorithms used in ThermoFAST, please refer to the following Doctoral Thesis.

Baker, CJ 2018, *Phase equilibrium measurements and advanced modelling for optimising liquefied natural gas production*, Doctor of Philosophy, The University of Western Australia. https://doi.org/10.26182/5bc411e7ccc0d

Name	Role	Email
Corey Baker	Lead Software Developer The University of Western Australia	Corey.Baker@research.uwa.edu.au
Eric F. May*	Chevron Chair of Gas Processing The University of Western Australia	Eric.May@uwa.edu.au

2 Developers

* Corresponding author

3 Acknowledgements

The development of this software tool was supported by the Australian Research Council through the Industrial Transformation Training Centre for LNG Futures, IC150100019. We also personally acknowledge Darren Rowland, Thomas Hughes, Jordan Oakley and Stanley Huang for help with the development of ThermoFAST and literature data comparisons.

4 Installation Folders

All the following files and folders must be stored in the same directory in order to utilise them internally; however only the "ESSENTIAL" components are required to run ThermoFAST.

Name	Туре	Description	
ThermoFAST.exe	ESSENTIAL	Primary executable	
	NOT ESSENTIAL	Provides access to the reference equation of state	
TREND.dll		GERG-2008 and improved Combustion Gas	
		equations powered by TREND*	
	NOT ESSENTIAL	Folder that provides ThermoFAST with quick	
		access to the following sub-folders	
ThormoFAST		1. Saved Files	
[Folder]		2. Custom Binary Interaction Parameters	
		3. Custom Component Properties	
		4. Custom Fluid Files	
		5. Documents	

* Span, R.; Eckermann, T.; Herrig, S.; Hielscher, S.; Jäger, A.; Thol, M. (2016): TREND. Thermodynamic Reference and Engineering Data 3.0. Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum.

5 Menu Items

5.1 File

Name	Description
	Saves the current configuration using the previous save or load file name
	and location including units, component properties, models, composition,
Farra	flash and solid calculations including solid diagrams. It is recommended to
Save	save to the recommended file location for quick and efficient access. If no
	previous saves or loads have been performed on the current instance of
	ThermoFAST then the Save As function will be utilised.
Save As	Save a new case folder to the recommended or a custom directory
	Loads a previously saved case folder. The Load function loads a saved
Load	folder of .txt files and therefore it is necessary to open the desired Load
	folder and then simply click open again once the .txt files appear. This will

Name	Description
	load all the required files in the selected case folder. It is not necessary to
	select any of the individual .txt files.
Decet	Resets the window to the default settings (deleting all selected components
Keset	and calculation results)
Exit	Exits ThermoFAST, closing all associated windows

TIP # 1: Saving to the recommended file location will cause previous cases to appear in the drop down menu located in the "Load" function for quick access

5.2 Models

Name	Description
Equation of State	Selected equation of state, where the recommended package
Equation of State	tuned for solid predictions is Peng-Robinson (1976).
	Selected type of mixing rule in the drop-down box. The button
	'View' button loads multiple data sets containing binary
Mixing Rules +	interaction parameters (BIPs) available for user selection. In
Interaction Parameters	some versions of ThermoFAST the user is able to edit the
	BIPs and save a data set for future quick access.
	Type of approach taken for solid equilibrium calculations. The
Colid Equilibrium	default approach utilises the cubic equation of state to
Solia Equilibrium	calculate the fugacity of the solvent. Other methods (not
	available in ThermoFAST) use activity coefficient models.
Solid Density	Selected model for density of a pure solid
	Selected hydrate model. Only available in specific versions of
	ThermoFAST; please contact the developers or visit their
Wydrofee	website for information on how to obtain this version.
nydrates	TREND has an inbuilt hydrate model that utilises the
	Helmholtz equation in the Improved Combustion Gas version
	only

 $st^{\prime\prime}$ TIP # 2: If a custom binary interaction parameter data set is saved by the user it will appear in the

ThermoFAST/Custom Binary Interaction Parameters folder in the same directory as ThermoFAST.exe

5.3 Help

Name	Description
User Manual	Obtain a copy of this user-manual through the user interface
About Us	Description of ThermoFAST and acknowledgements
Contact Developers	Contact the developers for future updates and troubleshooting
How to Cite us	Shows the citation for the current version of ThermoFAST
Disclaimer	ThermoFAST's official disclaimer regarding the appropriate
	use of this product

TIP # 3: A copy of the user manual will be saved in the **ThermoFAST/Documents** folder in the same directory as ThermoFAST.exe

6 User Interface

6.1 Units

Name	Description
SI (K MDa mal I)	Custom set of International System inspired units tailored to
51 (R, MPA, MOI, J)	academic and research areas (metric)
	Custom set of International System inspired units tailored to
Si (C, bar, kg, J)	plant and operational data (metric)
Field (°F, psia, Ibmol, BTU)	Custom set of Field (Imperial) units
	Allows the user to select a combination of units based on
0	preference; composition, temperature, pressure, density, heat
Custom	capacity and enthalpy. Heat capacity and Heat of Fusion (units
	of enthalpy) are required in the calculation of solid equilibrium.

6.2 FLUID

Name	Description
	Choose a saved fluid (if applicable), otherwise a custom
Fluid	mixture is automatically created
Available	Global list of available components
Selected	Components that have been selected for calculations
< Move Selected >	Selected components will be moved to the opposite list

Name	Description
	Remove all "Selected" components. Note this will reset
CLEAR ALL	various outputs associated with this mixture.
	View or edit the selected component properties depending
	on the version of ThermoFAST. Save functionality is
DBODDEDTIES	available in the editable version allowing users to save
PROPRERIIES	custom sets to the "Custom Component Properties" folder. If
	a name already exists it will overwrite that data set.
	This checkbox appears when a mixture containing water is
	selected. The formation of ice from trace concentrations of
	water in LNG mixtures at cryogenic temperatures is difficult
	to measure and not well understood. Standard industry
	specifications for the maximum allowable water content in
Allow Ice	LNG to avoid ice formation are in the range 0.1 to 1 ppm.
to Form	However, at these trace concentrations most thermodynamic
	models capable of predicting solid ice formation indicate ice
	should be stable at temperatures as high as 200 K. If the user
	is interested in the formation of other cryogenic solids then it
	is advisable to leave this box unchecked. This option only
	applies to the 'FLASH' and 'SOLIDS' calculators.

 $\stackrel{
m \Downarrow}{
m \forall}$ TIP # 4: Multiple components can be selected by holding down control and/or shift

 $\stackrel{
m \forall}{ au}$ TIP # 5: Double clicking a component moves it to the opposite list

TIP # 6: If a component property data set is saved by the user it will appear in the **ThermoFAST/Custom Component Properties** folder in the same directory as ThermoFAST.exe

6.3 COMPOSITION

Name	Description
Eluid	Choose a saved fluid (if applicable), otherwise a custom mixture is
Fiulu	automatically created

Name	Description
Basis	Select the composition basis: mass or molar
a -	Saves a custom defined fluid and a range of compositions. The
Save Fluid	fluid is saved in a location that allows ThermoFAST quick access.
	Deletes the fluid that is currently selected. If the "custom mixture"
Delete Saved Fluid	is selected it will simply wipe all data.
	This checkbox appears when a mixture containing water is
	selected. The formation of ice from trace concentrations of water
	in LNG mixtures at cryogenic temperatures is difficult to measure
	and not well understood. Standard industry specifications for the
	maximum allowable water content in LNG to avoid ice formation
	are in the range 0.1 to 1 ppm. However, at these trace
Hydrates to Form	concentrations most thermodynamic models capable of predicting
	solid ice formation indicate ice should be stable at temperatures as
	high as 200 K. If the user is interested in the formation of other
	cryogenic solids then it is advisable to leave this box unchecked.
	This option only applies to the 'FLASH' and 'SOLIDS' calculators.
VIEW PHASE	Calculates the phase envelope of the mixture in the adjacent option
ENVELOPE	box in the case of multiple compositions.
NORMALISE	Normalise all compositions - this is not essential but can be helpful
CLEAR ALL	Clears all compositions but does not clear selected components
	Copy all compositions and component names to the clipboard for
COPY DATA	easy integration into Excel
Normalised Status	Checks whether all compositions sum to 1 or zero

^{*} TIP # 7: Multiple mixtures can be considered by simply entering in a new composition in each subsequent column.

ightarrow TIP # 8: Calculations will run with un-normalised compositions (they are normalised internally).

TIP # 9: Users can select what data to copy to the clipboard by simply right clicking any selected data and pressing "copy" or using the shortcut "control" + "c". Then simply right click in Excel and click "paste" to output the data, or use the shortcut "control" + "v".

TIP # 10: If a custom fluid and a range of compositions is saved by the user it will appear in the **ThermoFAST/Custom Fluid Files** folder, located in the same directory as ThermoFAST.exe

6.4 FLASH

Name	Description
CONDITIONS	Performs flash calculations at a specified temperature and
	pressure to output the phase fractions and properties
COMPONENTS	Outputs the compositions of the component phases
Component Amounts	Select the component unit basis: mass or molar basis
Mixture Number	Corresponds to the mixture number under the
	"COMPOSITION" tab
	Temperature-Pressure Flash: perform a T-P flash
	Bubble Point Temperature: locates the bubble point
	temperature at a given pressure and composition
	Bubble Point Pressure: locates the bubble point pressure at
LOCATE	a given temperature and composition
	Dew Point Temperature : locates the dew point temperature
	at a given pressure and composition
	Dew Point Pressure : locates the dew point pressure at a
	given temperature and composition
	Appears when a bubble or dew point calculation is selected.
	In some systems there may be two conditions at which a dew
	or bubble point exists at the specified temperature or
Locate	pressure. Selecting this checkbox will force the algorithm to
(Checkbox that appears)	return the condition that satisfies the nominated constraint; if
	it is unchecked, the returned condition will be the other
	possibility if one exists.
CALCULATE	Performs the desired calculation
CLEAR ALL	Deletes all inputs and outputs
	Copy all inputs and outputs to the clipboard for easy
UUFI DATA	integration into Excel

TIP # 11: Although the mixture number is unique to each composition, if more flash conditions exist than there are mixture numbers, it will simply perform a flash calculation on the composition associated with the most recent mixture number. Therefore, there is no need to re-enter the same composition to perform multiple flash calculations of the same mixture.

TIP # 12: If more than one solid component exists then a combined solid density will be shown; however this is only used as an indicator. Unlike vapour and liquid phases, solids are not homogenous mixtures and each solid compound is treated as a separate solid phase (for this reason the "COMPONENTS" tab reports solid fractions, rather than the solid composition). The density of the individual solid can be found by simply choosing the pure component and specifying the same temperature and pressure.

6.5 SOLIDS

ThermoFAST is able to locate solid transition region temperatures or maximum solid concentrations for the selected mixture number. It has the ability to locate different types of solid phase equilibrium; solid-vapour, solid-vapour-liquid and solid-liquid equilibrium (solid-solid can be found under a normal "FLASH" calculation). The algorithm searches at constant pressure for the highest temperature at which a solid phase appears; thereafter it searches for and reports subsequent phase transitions that occur at lower temperatures. A detailed description of all possible transitions that can be located is provided in section 6.5.3 with illustrations.

Name	Description
	Used to specify and report the search results for the
	temperatures at which solid phase transitions occur for a
	given mixture at a specified temperature. The user must
	specify the pressure at which to search ("Input Pressure").
TEMPERATURE	Multiple pressures or multiple mixture numbers can be
	specified.
	Locate Melting Temperature at Bubble Point Pressure:
	If checked, ThermoFAST will search for the triple point condition where
	the bubble point meets the melting point. Solid equilibrium experiments
	are often conducted along the liquid's bubble point curve and in many

6.5.1 <u>SEARCH</u>

Name	Description
	cases the system pressure is not reported. For this search the composition
	of the liquid phase (rather than the overall composition) must be
	specified. Computation can be slow and this triple point may not exist in
	all systems which will result in an unstable condition.
	Used to specify and report the search results for the
	maximum mole fraction of the solute that the solution can
	hold at the specified temperature and pressure. The user
	must specify the temperature and pressure ("Input
	Temperature" and "Input Pressure") at which to calculate the
	solute concentration. The user can also specify a different
CONCENTRATION	solute to that recommended using the drop down menu.
CONCENTRATION	Multiple pressures or multiple mixture numbers can be
	specified. In cases where the algorithm is becomes unstable
	a range of melting temperatures or concentrations at the
	specified pressure. The user also has the option of
	additionally viewing all temperatures at which a phase
	transition occurs at the given pressure and calculated
	composition.
	Executes the search algorithm selected via either
CALCULATE	"TEMPERATURE" or "CONCENTRATION" above.
CLEAR ALL	Deletes all search inputs and outputs for the solids search
	Copy all solid search inputs and outputs to the clipboard in a
CUPT DATA	format easily pasted into Excel.
	Provides descriptions of the phase transitions that may be
DICTIONARY OF PHASE	returned by the solids search algorithm, similar to those
TRANSITIONS	provided in section 6.5.3

6.5.2 <u>GRAPH</u>

Name	Description
	Allows the user to calculate solubility curves, solid phase
GRAPH	diagrams and a eutectic diagram (temperature-composition
	plot) for a selected mixture

Name	Description
Selected Mixture	Performs the calculations with the mixture number
	corresponding to the "COMPOSITION" tab
	Calculates a solubility curve for the selected mixture at a
	constant pressure. The user is able to choose the solute that
	will solidify. Solidification of other components in the
	mixture will then not be considered by the calculation. The
SOLUBILITY	user selects concentration unit type and a range of
	concentration over which to calculate the corresponding
	melting temperature. For binary systems it is not necessary
	to specify the mixture composition because the solvent is
	sufficiently defined.
	Calculates a pressure-temperature diagram for a given
	mixture at which the solid phase transitions are indicated.
SOLID PHASE	The mixture composition must be defined. Essentially the
	Solid Search function is executed at the number of pressures
	specified by the user within the selected pressure range.
	Calculates a graph containing the different solid transition
	regions versus the selected component's composition. This
EUTECTIC	will also locate the eutectic point where composition of the
EUTECTIC	selected component produces the mixture's lowest melting
	temperature (Eutectic Temperature). This search also locates
	triple points.
	Calculates the selected graph if sufficient information is has
	been provided by the user.
SHOW GRADH	This button will appear upon completion of the graphing
SHOW GRAFTI	calculation, allowing the user to view the results.

TIP # 13: The user is able to copy the graph's outputs to the clipboard for easy integration to Excel once the "SHOW GRAPH" button is pushed

6.5.3 <u>TYPES OF TRANSITION POINTS</u>

Table 6.1 presents the Baker-May classification of transition pathways related to solid-fluid equilibrium that were identified using ThermoFAST. The classification also indicates whether

each transition pathway can be the highest solid-fluid equilibrium temperature (HSET) and/or occur at a temperature below the HSET. Some of these transition pathways are only possible in multi-component mixtures as a consequence of Gibbs Phase rule. Correctly identifying which type of transition is associated with the appearance of a solid phase at a given condition is important in an LNG production context because processing in upstream operations can in principle produce a fluid mixture containing no solids that is initially at a condition below its HSET. Please refer to the following Doctoral Thesis for further detail on the Baker-May classification table:

Baker, CJ 2018, *Phase equilibrium measurements and advanced modelling for optimising liquefied natural gas production*, Doctor of Philosophy, The University of Western Australia. https://doi.org/10.26182/5bc411e7ccc0d Table 6.1: The Baker-May classification of transition pathways involving solid-fluid equilibrium for pure fluids and mixtures. The ability for the transition to be the highest solid-fluid equilibrium temperature (HSET) and/or occur at a temperature below HSET is also indicated.

Path	Can be HSET?	Can be below HSET?	Description of Transition
			Pure Fluids Only [#]
#1	True	False	Liquid to Solid*
#2	True	False	Vapour to Solid*
			Multicomponent Mixtures (≥ 2 components)
#3	True	False	Vapour to SVE
#4	True	False	VLE to SVE
#5	True	True	Liquid to SLE
#6	True	False	Liquid to SLE (Liquid Retrograde)
#7	False	True	SLE (Liquid Retrograde) to SVE (SLVE)
#8	False	True	SVE to SLE (SLVE)
#9	False	True	SVE to SLE (Solid Retrograde)
#10	False	True	SLE (Solid Retrograde) to SLE (Normal)^
#11	False	True	SVE to SVE (Solid Retrograde)^
#12	False	True	SVE to VLE (SLVE) [or SVE (Solid Retrograde) to VLE]
#13	False	True	VLE to Liquid
#14	False	True	SLE (Solid Retrograde) to Liquid
#15	False	True	SVE to Liquid [or SVE (Solid Retrograde) to Liquid]
			Multicomponent Mixtures (≥ 3 components)
#16	True	False	VLE to SLVE (Liquid Retrograde)
#17	True	False	VLE to SLVE
#18	False	True	SLE (Liquid Retrograde) to SLVE
#19	False	True	SLE (Liquid Retrograde) to SLVE (Liquid Retrograde)
#20	False	True	SLVE (Liquid Retrograde) to SVE
#21	False	True	SLVE to SLE (Solid Retrograde)
#22	False	True	SLVE to SLE
#23	False	True	SVE to SLVE
#24	False	True	SVE to SLVE (Solid Retrograde)
#25	False	True	SLVE (Solid Retrograde) to Liquid
#26	False	True	SLVE (Solid Retrograde) to VLE

Binary mixtures at their Eutectic compositions can also undergo these transitions

* the special case of a pathway that passes through the pure fluid's triple point is considered an intersecting subset of pathway #1 and #2

^ Pathways are not phase transitions since no new phase appears. They are termed "retrograde-only transitions" as they correspond to the location of either a minimum or a maximum in the amount of solid phase with decreasing temperature

6.6 **TUNE**

The user has a powerful tool for tuning the binary interaction parameters for specific component sets using the selected equation of state. The user can tune to solid formation and bubble point conditions, as well as vapour-liquid compositions. The user will then be able to manually add these tuned binary interaction parameters to custom data sets under the *Models* menu item.

Name	Description
	Select the components to tune and set the starting binary
	interaction parameters based on the selected mixing rule. A
DINADIEC	good initial estimate may be required, this is common
BINARIEJ	practice when using a muli-parameter mixing rules. It is
	recommended to use a higher starting value for solid data
	$(0.01 < k_{ij} < 0.1 \text{ and } C_{ij} = 1).$
	Select from a variety of data types to tune from including
	solid formation, bubble point conditions and vapour-liquid
	compositions. Select the type of objective function (absolute
CRITERIA	or relative), absolute is recommended for vapour-liquid
	composition data. Select the tolerance of the binary
	interaction parameter(s) and the maximum number of
	iterations before stopping the calculation.
	Input the data that ThermoFAST will use to tune the binary
	interaction parameter(s). The sub-categories represent the
	objective functions selected under CRITERIA. In regards to
DATA	SOLID data, the user may also tune to the triple point for
	solid calculations (the boundary at which the bubble point
	meets the melting point and therefore a pressure is not
	required).
CLEAR ALL	Deletes all inputs and outputs (resets the tuning interface)
	Copy the tables under DATA or OUTPUTS to the clipboard
CUPY DATA	for easy integration into Excel

Name	Description
	View the tuning results. The user can view the optimised
OUTPUTS	binary interaction parameter and results as the tuning is
	progressing (before the completion criteria is met).

TIP # 14: If the tuning calculation has ended, the user can simply click TUNE DATA again to begin tuning to the most recently optimised binary interaction parameter and these are updated under the BINARIES tab.